Data of Supervisors of the Doctoral School at WPUT

Supervisor:	dr hab. inż. Anna Lewandowska, prof. ZUT
(academic titles and degrees,	
name and surname)	
Units:	WI ZUT
E-mail:	atomaszewska@zut.edu.pl
Contact:	693069961
ORCID	0000-0002-4320-4084
Scientific Discipline(s):	Information and Communication Technology
Research Areas	Research interests include visual, cognitive, and experimental
(max. 2000 characters):	perception and broadly understood computer simulations, with
	a particular focus on simulations in the automotive industry.
	My work involves acquiring, processing, and analyzing cognitive
	signals, particularly eye-tracking signals, ECG, and fNIRS, which
	are used to assess cognitive load. The data obtained allows for
	a better understanding of human cognitive mechanisms and their
	dependence on factors such as stress and fatigue, which are crucial
	in designing efficient user interfaces. A key aspect is eye-tracking
	to analyze visual perception patterns and assess the quality of visual
	effects. The research methodology is experimental-analytical, with
	perceptual experiments forming its foundation. The results of these
	experiments are used to model cognitive processes and adjust
	algorithm parameters so that the obtained visual effects align with
	user expectations. An essential part of the analysis is the evaluation
	of the effectiveness of visual communication, including the
	development and validation of metrics for the invasiveness of visual
	content. Statistical analysis methods are applied to ensure the
	reliability of results, enabling an objective interpretation of data and
	verification of the correctness of obtained results. Currently,
	research focuses on analyzing the correlation between human
	perception and cognitive style, as determined by the FRIS tool,
	using biosensors such as eye trackers, ECG, and fNIRS.
	The findings of these studies are applied in the optimization of
	graphical interfaces, allowing for their adaptation to the user's
	cognitive load. A particular application area includes medical
	interfaces and automotive systems, where dynamic interface
	modification can significantly improve user comfort and safety.
Keywords (max. 10):	Visual perception, eye-tracking, cognitive signals, cognitive load,
	user interfaces, automotive, user-study, HCI, computer simulations